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Complex Pythagorean fuzzy (C-PF) information is an extended form of fuzzy 
set theory. In this paper, we aim to compute the theory of prioritized 
aggregation operators based on Aczel-Alsina t-norm and t-conorm for 
managing the theory of C-PF information, such as C-PF prioritized Aczel-
Alsina averaging, C-PF prioritized Aczel-Alsina ordered averaging, C-PF 
prioritized Aczel-Alsina geometric, and C-PF prioritized Aczel-Alsina ordered 
geometric operators. Three basic properties of the derived theory are also 
examined. Additionally, we illustrate the proposed multi-attribute decision-
making technique for evaluating real-life problems related to software 
companies. Finally, we provide some examples to illustrate the contrast 
between derived work and previous or current information in order to 
demonstrate the ability and proficiency of the novel approach. 
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1. Introduction 
 

The decision-making scenario is a capable procedure that is used for examining the finest 
preference from the collection of preferences, where the multiple-attribute decision-making 
(MADM) technique is the essential and critical part of the decision-making procedure. Furthermore, 
clustering analysis, pattern recognition, medical diagnosis, and image segmentation are also very 
famous and useful because of their demand, but in the presence of classical set theory, we faced a 
lot of problems because we have only two possibilities, such as zero or one. Because of the above 
complications, Zadeh [1] exposed or derived the mathematical and theoretical form of the fuzzy set 
(FS) by including a truth grade whose range is in the form of a unit interval. Furthermore, Atanassov 
[2] modified or extended the theory of FS and derived a new and valuable theory of intuitionistic FS 

(IFS) by including the term of truth and falsity grade with a law: 𝟎 ≤ µẊ𝑹𝑷
𝟏 (ẇ) + 𝝂Ẋ𝑹𝑷

𝟏 (ẇ) ≤ 𝟏. Beca-  
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use of flaws in the existing idea of FS and IFS, the theory of Pythagorean FS (PFS) was derived by Yager 

[3] by modifying the law of IFS, such as 0 ≤ µẊ𝑅𝑃
2 (ẇ) + 𝜈Ẋ𝑅𝑃

2 (ẇ) ≤ 1. After a successful investigation, 

various scholars have derived different types of information under the consideration of FS, IFS, and 
PFS theory, for instance, distance measures [4], correlation coefficient measures [5], divergence 
measures [6], and variance measures [7]. 

The phase term is also very famous and valuable because in many practical places we faced 
periodic functions which played a valuable and dominant role in the environment of real-life 
problems, for instance, when a person wants to buy a new branded type of the car, for this, he visits 
different car showrooms, the owner of each showroom give the type of data regarding each car such 
as name and production date of the car, which is represented the amplitude and phase term, in last 
existing theory, we discussed that the theory of FSs, IFSs, and PFSs have deal with one dimension 
information instead of two-dimension information, therefore, the main or major idea of complex FS 
(C-FS) was invented by Ramot et al. [8] by including the phase term in the term of truth grade whose 
range is in the form of a unit interval for each real part and imaginary part. Furthermore, Alkouri & 
Salleh [9] modified or extended the theory of C-FS and derived a new and valuable theory of complex 
IFS (C-IFS) by including the phase term in the field of truth and falsity grade with two same laws: 0 ≤

µẊ𝑅𝑃
1 (ẇ) + 𝜈Ẋ𝑅𝑃

1 (ẇ) ≤ 1 and 0 ≤ µẊ𝐼𝑃
1 (ẇ) + 𝜈Ẋ𝐼𝑃

1 (ẇ) ≤ 1. Because of flaws in the existing idea of C-

FS and C-IFS, the theory of complex PFS (CPFS) was derived by Ullah et al. [10] by modifying the same 

laws of C-IFS, such as 0 ≤ µẊ𝑅𝑃
2 (ẇ) + 𝜈Ẋ𝑅𝑃

2 (ẇ) ≤ 1 and 0 ≤ µẊ𝐼𝑃
2 (ẇ) + 𝜈Ẋ𝐼𝑃

2 (ẇ) ≤ 1. After a 

successful investigation, various scholars have derived different types of information under the 
consideration of C-FS, C-IFS, and C-PFS theory, for instance, decision-making [11], group decision-
making problems [12], Einstein aggregation operators (AOs) [13], and Archimedean AOs [14]. 

In the presence of the algebraic t-norm and t-conorm, the theory of prioritized aggregation 
operators (PAOs) under the consideration of priority degree, Yager [15] derived the theory of PAOs 
for classical information. Furthermore, Aczel-Alsina t-norm and t-conorm were invented by Alsina & 
Alsina [16] in 1982. Yu & Xu [17] exposed PAOs for IFSs. Senapati et al. [18] derived the AA AOs for 
IFSs. AA geometric AOs for IFS were developed by Senapati & [19]. PAOs for PFS were developed by 
Khan et al. [20]. AA AOs for PFS were invented by Senapati et al. [21], Hussain et al. [22], and Ul Haq 
et al. [23]. PAOs for C-IFS were invented by Garg & Rani [24]. AA AOs for C-IFS were exposed by 
Mahmood et al. [25]. Prioritized weighted AOs for C-PFS were derived by Akram et al. [26]. Finally, 
Jin et al. [27] exposed the theory of AA AOs for C-PF information and their application in decision-
making.  

C-PF information is the very famous and extended form of fuzzy set theory, which covers the 
grade of membership and the grade of non-membership with a valuable characteristic that is the sum 
of the squares of the duplet (for real and imaginary parts) should be contained in the unit interval. In 
this analysis. We aim to derive the following information, such as: 

 
i. to compute the theory of the C-PF prioritized AA averaging (C-PFPAAA), C-PF prioritized 

AA ordered averaging (C-PFPAAOA), C-PF prioritized AA geometric (C-PFPAAG), and C-PF 
prioritized AA ordered geometric (C-PFPAAOG) operators; 

ii. to examine the idempotency, monotonicity, and boundedness properties; 
iii. to illustrate a MADM technique to describe the reliability and effectiveness of the derived 

theory; 
iv. to demonstrate some numerical examples for showing the comparison between the 

derived work and existing approaches. 
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The main structure of this analysis is stated as: In section 2, we revised the idea of C-PF 
information and its operational laws. In Section 3, we computed the theory of C-PFPAAA, C-PFPAAOA, 
C-PFPAAG, and C-PFPAAOG operators. Further, we examined the idempotency, monotonicity, and 
boundedness properties. In Section 4, for evaluating various real-life problems, we illustrated an 
MADM technique based on the evaluated theory to describe the reliability and effectiveness of the 
derived theory. In Section 5, we demonstrated some numerical examples to show the comparison 
between the derived work and existing or prevailing information to state the capability and art of the 
derived approaches. In Section 6, we derived some concluding remarks. 
 
2. Preliminaries 
 

The main theme of this section is to revise the idea of C-PF information and its operational laws. 

Definition 1 [10]: On a fixed set Ẁ, we examined the C-PF set Ẋ, such as 
 

Ẋ = {((µẊ𝑅𝑃(ẇ), µẊ𝐼𝑃(ẇ)) , (𝜈Ẋ𝑅𝑃(ẇ), 𝜈Ẋ𝐼𝑃(ẇ))) : ẇ ∈ Ẁ} (1) 

 

where µẊ𝑅𝑃(ẇ), µẊ𝐼𝑃(ẇ), 𝜈Ẋ𝑅𝑃(ẇ), 𝜈Ẋ𝐼𝑃(ẇ) ∈ [0,1] with 0 ≤ µẊ𝑅𝑃
2 (ẇ) + 𝜈Ẋ𝑅𝑃

2 (ẇ) ≤ 1 and 0 ≤

µẊ𝐼𝑃
2 (ẇ) + 𝜈Ẋ𝐼𝑃

2 (ẇ) ≤ 1. Moreover, ȓẊ(ẇ) = (ȓẊ𝑃𝑅(ẇ), ȓẊ𝐼𝑃(ẇ)) =

(√1 − (µẊ𝑅𝑃
2 (ẇ) + 𝜈Ẋ𝑅𝑃

2 (ẇ)) , √1 − (µẊ𝐼𝑃
2 (ẇ) + 𝜈Ẋ𝐼𝑃

2 (ẇ))) represents the neutral grade where the 

simple form of PF value (PFV) is stated by: Ẋ = ((µẊ𝑅𝑃𝑗
, µẊ𝐼𝑃𝑗

) , (𝜈Ẋ𝑅𝑃𝑗
, 𝜈Ẋ𝐼𝑃𝑗

)) , 𝑗 = 1,2, . . , 𝑛. 

Definition 2 [27]: Assume any two PFVs Ẋ = ((µẊ𝑅𝑃𝑗
, µẊ𝐼𝑃𝑗

) , (𝜈Ẋ𝑅𝑃𝑗
, 𝜈Ẋ𝐼𝑃𝑗

)) , 𝑗 = 1,2, then we 

have 
 

Ẋ1⊕Ẋ2 =

(

 
 
 
 
 
 

(

 
 √

1 − 𝑒
−((−𝑙𝑛 (1−µ

Ẋ𝑅𝑃1

2 ))

ℸ

+(−𝑙𝑛 (1−µ
Ẋ𝑅𝑃2

2 ))

ℸ

)

1/ℸ

,
√
1 − 𝑒

−((−𝑙𝑛 (1−µ
Ẋ𝐼𝑃1

2 ))

ℸ

+(−𝑙𝑛 (1−µ
Ẋ𝐼𝑃2

2 ))

ℸ

)

1/ℸ

)

 
 
,

(𝑒
−((−𝑙𝑛(𝜈Ẋ𝑅𝑃1

))

ℸ

+(−𝑙𝑛(𝜈Ẋ𝑅𝑃2
))

ℸ

)

1/ℸ

, 𝑒
−((−𝑙𝑛(𝜈Ẋ𝐼𝑃1

))

ℸ

+(−𝑙𝑛(𝜈Ẋ𝐼𝑃2
))

ℸ

)

1/ℸ

)

)

 
 
 
 
 
 

  (2) 

 

Ẋ1⊗Ẋ2 =

(

 
 
 
 
 
 (𝑒

−((−𝑙𝑛(µẊ𝑅𝑃1
))

ℸ

+(−𝑙𝑛(µẊ𝑅𝑃2
))

ℸ

)

1/ℸ

, 𝑒
−((−𝑙𝑛(µẊ𝐼𝑃1

))

ℸ

+(−𝑙𝑛(µẊ𝐼𝑃2
))

ℸ

)

1/ℸ

) ,

(

 
 √

1 − 𝑒
−((−𝑙𝑛 (1−𝜈

Ẋ𝑅𝑃1

2 ))

ℸ

+(−𝑙𝑛 (1−𝜈
Ẋ𝑅𝑃2

2 ))

ℸ

)

1/ℸ

,
√
1 − 𝑒

−((−𝑙𝑛 (1−𝜈
Ẋ𝐼𝑃1

2 ))

ℸ

+(−𝑙𝑛 (1−𝜈
Ẋ𝐼𝑃2

2 ))

ℸ

)

1/ℸ

)

 
 

)

 
 
 
 
 
 

  (3) 
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𝜑Ẋ =

(

 
 
 
 
 
 

(

 
 √

1 − 𝑒
−(𝜑(−𝑙𝑛 (1−µẊ𝑅𝑃1

2 ))

ℸ

)

1/ℸ

,
√
1 − 𝑒

−(𝜑(−𝑙𝑛 (1−µẊ𝐼𝑃1
2 ))

ℸ

)

1/ℸ

)

 
 
,

(𝑒
−(𝜑(−𝑙𝑛(𝜈Ẋ𝑅𝑃1

))

ℸ

)

1/ℸ

, 𝑒
−(𝜑(−𝑙𝑛(𝜈Ẋ𝐼𝑃1

))

ℸ

)

1/ℸ

)

)

 
 
 
 
 
 

  (4) 

 

Ẋ𝜑 =

(

 
 
 
 
 
 (𝑒

−(𝜑(−𝑙𝑛(µẊ𝑅𝑃1
))

ℸ

)

1/ℸ

, 𝑒
−(𝜑(−𝑙𝑛(µẊ𝐼𝑃1

))

ℸ

)

1/ℸ

) ,

(

 
 √

1 − 𝑒
−(𝜑(−𝑙𝑛 (1−𝜈Ẋ𝑅𝑃1

2 ))

ℸ

)

1/ℸ

,
√
1 − 𝑒

−(𝜑(−𝑙𝑛 (1−𝜈Ẋ𝐼𝑃1

2 ))

ℸ

)

1/ℸ

)

 
 

)

 
 
 
 
 
 

  (5) 

 

Definition 3 [27]: Assume any two PFVs Ẋ𝑗 = ((µẊ𝑅𝑃𝑗
, µẊ𝐼𝑃𝑗

) , (𝜈Ẋ𝑅𝑃𝑗
, 𝜈Ẋ𝐼𝑃𝑗

)) , 𝑗 = 1,2. Then, we have 

 

Ś(Ẋ) =
1

2
((µẊ𝑅𝑃𝑗

2 + µẊ𝐼𝑃𝑗
2 ) − (𝜈Ẋ𝑅𝑃𝑗

2 + 𝜈Ẋ𝐼𝑃𝑗
2 )) ∈ [−1,1]  (6) 

 

Á(Ẋ) =
1

2
((µẊ𝑅𝑃𝑗

2 + µẊ𝐼𝑃𝑗
2 ) + (𝜈Ẋ𝑅𝑃𝑗

2 + 𝜈Ẋ𝐼𝑃𝑗
2 )) ∈ [0,1]  (7) 

 
Notice that: 
 

i. If Ś(Ẋ) < Ś(Ẏ) ⇒ Ẋ < Ẏ; 

ii. If Ś(Ẋ) > Ś(Ẏ) ⇒ Ẋ > Ẏ;  

iii. If Ś(Ẋ) = Ś(Ẏ), then If Á(Ẋ) > Á(Ẏ) ⇒ Ẋ > Ẏ or If Á(Ẋ) < Á(Ẏ) ⇒ Ẋ > Ẏ or If Á(Ẋ) =

Á(Ẏ) ⇒ Ẋ > Ẏ. 
 

3. Complex Pythagorean Fuzzy Prioritized Aczel–Alsina Operators 
 

To compute the theory of PAOs based on AA t-norm and t-conorm for managing the theory of C-
PF information, such as C-PFPAAA, C-PFPAAOA, C-PFPAAG, and C-PFPAAOG operators. Here, we also 
examined the fundamental properties of the derived theory. 

Definition 4: The mathematical form of the C-PFPAAA operator is particularized by: 
 

𝐶 − 𝑃𝐹𝑃𝐴𝐴𝐴(Ẋ1, Ẋ2, … , Ẋ𝑘) =
𝑇1

∑ 𝑇𝑗
𝑛
𝑗=1

(Ẋ1) ⊕ …⊕
𝑇𝑛

∑ 𝑇𝑗
𝑛
𝑗=1

(Ẋ𝑛) =⊕𝑗=1
𝑛 (

𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1

(Ẋ𝑗))  (8) 

 

where 𝑇1 = 1 and 𝑇𝑗 =⊕𝑘=1
𝑗−1

Ś(Ẋ𝑘), 𝑘 = 2,3, … , 𝑛. 
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Theorem 1: Here, we stated that the finalized value of Eq. (8) is again a C-PF information, such 
as:  
 
𝐶 − 𝑃𝐹𝑃𝐴𝐴𝐴(Ẋ1, Ẋ2, … , Ẋ𝑘) =

(

 
 
 
 
 
 
 
 
 

(

 
 
 
 √

1 − 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1

)𝑛
𝑗=1 (−𝑙𝑛 (1−µẊ𝑅𝑃𝑗

2 ))

ℸ

)

1
ℸ

,

√

1 − 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1

)𝑛
𝑗=1 (−𝑙𝑛 (1−µẊ𝐼𝑃𝑗

2 ))

ℸ

)

1
ℸ

)

 
 
 
 

,

(

 
 
𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1

)𝑛
𝑗=1 (−𝑙𝑛(𝜈Ẋ𝑅𝑃𝑗

))

ℸ

)

1/ℸ

, 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1

)𝑛
𝑗=1 (−𝑙𝑛(𝜈Ẋ𝐼𝑃𝑗

))

ℸ

)

1/ℸ

)

 
 

)

 
 
 
 
 
 
 
 
 

  
(9) 

 
Proof of Theorem 1 is provided Appendix-1. 

Preposition 1 (idempotency): When Ẋ𝑗 = Ẋ = ((µẊ𝑅𝑃 , µẊ𝐼𝑃), (𝜈Ẋ𝑅𝑃 , 𝜈Ẋ𝐼𝑃)) , 𝑗 = 1,2, … , 𝑛, then 

 

𝐶 − 𝑃𝐹𝑃𝐴𝐴𝐴(Ẋ1, Ẋ2, … , Ẋ𝑛) = Ẋ  (10) 
 

Preposition 2 (monotonicity): When Ẋ𝑗 ≤ Ẋ𝑗
∗∗, 𝑗 = 1,2, … , 𝑛, then 

 

𝐶 − 𝑃𝐹𝑃𝐴𝐴𝐴(Ẋ1, Ẋ2, … , Ẋ𝑛) ≤ 𝐶 − 𝑃𝐹𝑃𝐴𝐴𝐴(Ẋ1
∗∗, Ẋ2

∗∗, … , Ẋ𝑛
∗∗)  (11) 

 

Preposition 3 (boundedness): When Ẋ𝑗
− = ((min

𝑗
µẊ𝑅𝑃𝑗

, min
𝑗
µẊ𝐼𝑃𝑗

) , (max
𝑗
𝜈Ẋ𝑅𝑃𝑗

, max
𝑗
𝜈Ẋ𝐼𝑃𝑗

)), 

and Ẋ𝑗
+ = ((max

𝑗
µẊ𝑅𝑃𝑗

, max
𝑗
µẊ𝐼𝑃𝑗

) , (min
𝑗
𝜈Ẋ𝑅𝑃𝑗

, min
𝑗
𝜈Ẋ𝐼𝑃𝑗

)) , 𝑗 = 1,2, … , 𝑛, then 

 
Ẋ𝑗
− ≤ 𝐶 − 𝑃𝐹𝑃𝐴𝐴𝐴(Ẋ1, Ẋ2, … , Ẋ𝑛) ≤ Ẋ𝑗

+  (12) 

 
Definition 5: The mathematical form of the C-PFPAAOA operator is particularized by: 
 

𝐶 − 𝑃𝐹𝑃𝐴𝐴𝑂𝐴(Ẋ1, Ẋ2, … , Ẋ𝑘) =
𝑇1

∑ 𝑇𝑗
𝑛
𝑗=1

(Ẋ𝑂(1))⊕ …⊕
𝑇𝑛

∑ 𝑇𝑗
𝑛
𝑗=1

(Ẋ𝑂(𝑛)) =⊕𝑗=1
𝑛 (

𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1

(Ẋ𝑂(𝑗)))  (13) 

 

where 𝑂(𝑗) ≤ 𝑂(𝑗 − 1), 𝑇1 = 1 and 𝑇𝑗 =⊕𝑘=1
𝑗−1

Ś(Ẋ𝑘), 𝑘 = 2,3, … , 𝑛. 

Theorem 2: Here, we stated that the finalized value of Eq. (13) is again a C-PF information, such 
as  
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𝐶 − 𝑃𝐹𝑃𝐴𝐴𝑂𝐴(Ẋ1, Ẋ2, … , Ẋ𝑘) =

(

 
 
 
 
 
 
 
 
 
 

(

 
 
 
 √

1 − 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1

)𝑛
𝑗=1 (−𝑙𝑛 (1−µ

Ẋ𝑅𝑃𝑂(𝑗)

2 ))

ℸ

)

1
ℸ

,

√

1 − 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1

)𝑛
𝑗=1 (−𝑙𝑛 (1−µ

Ẋ𝐼𝑃𝑂(𝑗)

2 ))

ℸ

)

1
ℸ

)

 
 
 
 

,

(

  
 
𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1

)𝑛
𝑗=1 (−𝑙𝑛(𝜈Ẋ𝑅𝑃𝑂(𝑗)

))

ℸ

)

1/ℸ

, 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1

)𝑛
𝑗=1 (−𝑙𝑛(𝜈Ẋ𝐼𝑃𝑂(𝑗)

))

ℸ

)

1/ℸ

)

  
 

)

 
 
 
 
 
 
 
 
 
 

  
(14) 

 

Preposition 4 (idempotency): When Ẋ𝑗 = Ẋ = ((µẊ𝑅𝑃 , µẊ𝐼𝑃), (𝜈Ẋ𝑅𝑃 , 𝜈Ẋ𝐼𝑃)) , 𝑗 = 1,2, … , 𝑛, then 

 

𝐶 − 𝑃𝐹𝑃𝐴𝐴𝑂𝐴(Ẋ1, Ẋ2, … , Ẋ𝑛) = Ẋ  (15) 
 
Preposition 5 (monotonicity): When Ẋ𝑗 ≤ Ẋ𝑗

∗∗, 𝑗 = 1,2, … , 𝑛, then  

 

𝐶 − 𝑃𝐹𝑃𝐴𝐴𝑂𝐴(Ẋ1, Ẋ2, … , Ẋ𝑛) ≤ 𝐶 − 𝑃𝐹𝑃𝐴𝐴𝑂𝐴(Ẋ1
∗∗, Ẋ2

∗∗, … , Ẋ𝑛
∗∗)  (16) 

 

Preposition 6 (boundedness): When Ẋ𝑗
− = ((min

𝑗
µẊ𝑅𝑃𝑗

, min
𝑗
µẊ𝐼𝑃𝑗

) , (max
𝑗
𝜈Ẋ𝑅𝑃𝑗

, max
𝑗
𝜈Ẋ𝐼𝑃𝑗

)), 

and Ẋ𝑗
+ = ((max

𝑗
µẊ𝑅𝑃𝑗

, max
𝑗
µẊ𝐼𝑃𝑗

) , (min
𝑗
𝜈Ẋ𝑅𝑃𝑗

, min
𝑗
𝜈Ẋ𝐼𝑃𝑗

)) , 𝑗 = 1,2, … , 𝑛, then 

 
Ẋ𝑗
− ≤ 𝐶 − 𝑃𝐹𝑃𝐴𝐴𝑂𝐴(Ẋ1, Ẋ2, … , Ẋ𝑛) ≤ Ẋ𝑗

+  (17) 

 
Definition 6: The mathematical form of the C-PFPAAG operator is particularized by: 
 

𝐶 − 𝑃𝐹𝑃𝐴𝐴𝐺(Ẋ1, Ẋ2, … , Ẋ𝑘) = (Ẋ1)

𝑇1
∑ 𝑇𝑗
𝑛
𝑗=1 ⊕ (Ẋ2)

𝑇2
∑ 𝑇𝑗
𝑛
𝑗=1 ⊕…⊕ (Ẋ𝑛)

𝑇𝑛
∑ 𝑇𝑗
𝑛
𝑗=1 =⊕𝑗=1

𝑛 ((Ẋ𝑗)

𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1 )  (18) 

 

where 𝑇1 = 1 and 𝑇𝑗 =⊕𝑘=1
𝑗−1

Ś(Ẋ𝑘), 𝑘 = 2,3, … , 𝑛. 

Theorem 3: Here, we stated that the finalized value of Eq. (18) is again a C-PF information  
 

𝐶 − 𝑃𝐹𝑃𝐴𝐴𝐺(Ẋ1, Ẋ2, … , Ẋ𝑘) =

(

 
 
 
 
 
 
 
 
 
 

(

  
 
𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1

)𝑛
𝑗=1 (−𝑙𝑛(µẊ𝑅𝑃𝑗

))

ℸ

)

1/ℸ

, 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1

)𝑛
𝑗=1 (−𝑙𝑛(µẊ𝐼𝑃𝑗

))

ℸ

)

1/ℸ

)

  
 
,

(

 
 
 
 √

1 − 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1

)𝑛
𝑗=1 (−𝑙𝑛 (1−𝜈

Ẋ𝑅𝑃𝑗

2 ))

ℸ

)

1
ℸ

,

√

1 − 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1

)𝑛
𝑗=1 (−𝑙𝑛 (1−𝜈

Ẋ𝐼𝑃𝑗

2 ))

ℸ

)

1
ℸ

)

 
 
 
 

)

 
 
 
 
 
 
 
 
 
 

  
(19) 
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Preposition 7 (idempotency): When Ẋ𝑗 = Ẋ = ((µẊ𝑅𝑃 , µẊ𝐼𝑃), (𝜈Ẋ𝑅𝑃 , 𝜈Ẋ𝐼𝑃)) , 𝑗 = 1,2, … , 𝑛, then 

 

𝐶 − 𝑃𝐹𝑃𝐴𝐴𝐺(Ẋ1, Ẋ2, … , Ẋ𝑛) = Ẋ  (20) 
 
Preposition 8 (monotonicity): When Ẋ𝑗 ≤ Ẋ𝑗

∗∗, 𝑗 = 1,2, … , 𝑛, then 

 

𝐶 − 𝑃𝐹𝑃𝐴𝐴𝐺(Ẋ1, Ẋ2, … , Ẋ𝑛) ≤ 𝐶 − 𝑃𝐹𝑃𝐴𝐴𝐺(Ẋ1
∗∗, Ẋ2

∗∗, … , Ẋ𝑛
∗∗)  (21) 

 

Preposition 9 (boundedness): When Ẋ𝑗
− = ((min

𝑗
µẊ𝑅𝑃𝑗

, min
𝑗
µẊ𝐼𝑃𝑗

) , (max
𝑗
𝜈Ẋ𝑅𝑃𝑗

, max
𝑗
𝜈Ẋ𝐼𝑃𝑗

)), 

and Ẋ𝑗
+ = ((max

𝑗
µẊ𝑅𝑃𝑗

, max
𝑗
µẊ𝐼𝑃𝑗

) , (min
𝑗
𝜈Ẋ𝑅𝑃𝑗

, min
𝑗
𝜈Ẋ𝐼𝑃𝑗

)) , 𝑗 = 1,2, … , 𝑛, then 

 
Ẋ𝑗
− ≤ 𝐶 − 𝑃𝐹𝑃𝐴𝐴𝐺(Ẋ1, Ẋ2, … , Ẋ𝑛) ≤ Ẋ𝑗

+  (22) 

 
Definition 7: The mathematical form of the C-PFPAAOG operator is particularized by 
 

𝐶 − 𝑃𝐹𝑃𝐴𝐴𝑂𝐺(Ẋ1, Ẋ2, … , Ẋ𝑘) = (Ẋ𝑂(1))

𝑇1
∑ 𝑇𝑗
𝑛
𝑗=1 ⊕…⊕ (Ẋ𝑂(𝑛))

𝑇𝑛
∑ 𝑇𝑗
𝑛
𝑗=1 =⊕𝑗=1

𝑛 ((Ẋ𝑂(𝑗))

𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1 )  (23) 

 

where 𝑂(𝑗) ≤ 𝑂(𝑗 − 1), 𝑇1 = 1 and 𝑇𝑗 =⊕𝑘=1
𝑗−1

Ś(Ẋ𝑘), 𝑘 = 2,3, … , 𝑛. 

Theorem 4: Here, we stated that the finalized value of Eq. (23) is again a C-PF information as  
 

𝐶 − 𝑃𝐹𝑃𝐴𝐴𝑂𝐺(Ẋ1, Ẋ2, … , Ẋ𝑘) =

(

 
 
 
 
 
 
 
 
 

(

 
 
𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1

)𝑛
𝑗=1 (−𝑙𝑛(µẊ𝑅𝑃𝑂(𝑗)

))

ℸ

)

1/ℸ

, 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1

)𝑛
𝑗=1 (−𝑙𝑛(µẊ𝐼𝑃𝑂(𝑗)

))

ℸ

)

1/ℸ

)

 
 
,

(

 
 
 
 √

1 − 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1

)𝑛
𝑗=1 (−𝑙𝑛 (1−𝜈Ẋ𝑅𝑃𝑂(𝑗)

2 ))

ℸ

)

1
ℸ

,

√

1 − 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1

)𝑛
𝑗=1 (−𝑙𝑛 (1−𝜈Ẋ𝐼𝑃𝑂(𝑗)

2 ))

ℸ

)

1
ℸ

)

 
 
 
 

)

 
 
 
 
 
 
 
 
 

  
(24) 

 

Preposition 10 (idempotency): When Ẋ𝑗 = Ẋ = ((µẊ𝑅𝑃 , µẊ𝐼𝑃), (𝜈Ẋ𝑅𝑃 , 𝜈Ẋ𝐼𝑃)) , 𝑗 = 1,2, … , 𝑛, then 

 

𝐶 − 𝑃𝐹𝑃𝐴𝐴𝑂𝐺(Ẋ1, Ẋ2, … , Ẋ𝑛) = Ẋ  (25) 
 
Preposition 11 (monotonicity): When Ẋ𝑗 ≤ Ẋ𝑗

∗∗, 𝑗 = 1,2, … , 𝑛, then 

 

𝐶 − 𝑃𝐹𝑃𝐴𝐴𝑂𝐺(Ẋ1, Ẋ2, … , Ẋ𝑛) ≤ 𝐶 − 𝑃𝐹𝑃𝐴𝐴𝑂𝐺(Ẋ1
∗∗, Ẋ2

∗∗, … , Ẋ𝑛
∗∗)  (26) 
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Preposition 12 (boundedness): When Ẋ𝑗
− = ((min

𝑗
µẊ𝑅𝑃𝑗

, min
𝑗
µẊ𝐼𝑃𝑗

) , (max
𝑗
𝜈Ẋ𝑅𝑃𝑗

, max
𝑗
𝜈Ẋ𝐼𝑃𝑗

)), 

and Ẋ𝑗
+ = ((max

𝑗
µẊ𝑅𝑃𝑗

, max
𝑗
µẊ𝐼𝑃𝑗

) , (min
𝑗
𝜈Ẋ𝑅𝑃𝑗

, min
𝑗
𝜈Ẋ𝐼𝑃𝑗

)) , 𝑗 = 1,2, … , 𝑛, then 

 
Ẋ𝑗
− ≤ 𝐶 − 𝑃𝐹𝑃𝐴𝐴𝑂𝐺(Ẋ1, Ẋ2, … , Ẋ𝑛) ≤ Ẋ𝑗

+  (27) 

 
4. Multiple-Attribute Decision-Making Method-based on the Derived Theory 

 
For evaluating various real-life problems, we illustrated an MADM technique based on the 

evaluated theory to describe the worth of the derived theory. Then, we demonstrated some 
numerical examples to show the comparison between the derived work and prevailing approaches. 

Assume a family of alternatives Ẋ𝐴𝐿1 , Ẋ𝐴𝐿2 , … , Ẋ𝐴𝐿𝑚  and the family of attributes Ẋ1, Ẋ2, … , Ẋ𝑛. 

Further, we construct the information matrix while each value of each attribute in every alternative 

is in the form of C-PFVs, where µẊ𝑅𝑃(ẇ), µẊ𝐼𝑃(ẇ), 𝜈Ẋ𝑅𝑃(ẇ), 𝜈Ẋ𝐼𝑃(ẇ) ∈ [0,1] with 0 ≤ µẊ𝑅𝑃
2 (ẇ) +

𝜈Ẋ𝑅𝑃
2 (ẇ) ≤ 1 and 0 ≤ µẊ𝐼𝑃

2 (ẇ) + 𝜈Ẋ𝐼𝑃
2 (ẇ) ≤ 1. Moreover, ȓẊ(ẇ) = (ȓẊ𝑃𝑅(ẇ), ȓẊ𝐼𝑃(ẇ)) =

(√1 − (µẊ𝑅𝑃
2 (ẇ) + 𝜈Ẋ𝑅𝑃

2 (ẇ)) , √1 − (µẊ𝐼𝑃
2 (ẇ) + 𝜈Ẋ𝐼𝑃

2 (ẇ))) represented the neutral grade where 

the simple form of PF value (PFV) is stated by Ẋ = ((µẊ𝑅𝑃𝑗
, µẊ𝐼𝑃𝑗

) , (𝜈Ẋ𝑅𝑃𝑗
, 𝜈Ẋ𝐼𝑃𝑗

)) , 𝑗 = 1,2, . . , 𝑛. To 

find the finest preference from the collection of preferences, we use the following algorithm. 
Step 1: We arrange the information matrix by including their values in the form of C-PFVs. If the 

matrix covered the cost types of data, then by using the below theory, we needed to normalize it, 
such as: 

 

𝑀 =

{
 
 

 
 ((µẊ𝑅𝑃𝑗

, µẊ𝐼𝑃𝑗
) , (𝜈Ẋ𝑅𝑃𝑗

, 𝜈Ẋ𝐼𝑃𝑗
)) for benefit

((𝜈Ẋ𝑅𝑃𝑗
, 𝜈Ẋ𝐼𝑃𝑗

) , (µẊ𝑅𝑃𝑗
, µẊ𝐼𝑃𝑗

)) for cost

  

  

(28) 

Further, if the matrix covered the benefit type of data, then we would not need to normalize it. 
Step 2: Here, we aggregate the information matrix by using the theory of the C-PFPAAA operator 

and the C-PFPAAG operator. 
Step 3: Discover the score values or accuracy values of each aggregated value. 
Step 4: Find the ranking results and derive the finest optimal from the collection of preferences. 

 

5. Illustrative Example: A Case for a Software Company 
 
A software company wants to appoint an expert for the post of manager. For this, the owner of 

the company calls five different candidates Ẋ𝐴𝐿1 , Ẋ𝐴𝐿2 , Ẋ𝐴𝐿3 , Ẋ𝐴𝐿4 , and Ẋ𝐴𝐿5 , which are stated as a 

collection of five alternatives. Further, to choose the most suitable and perfect candidates for the 
post of manager, the owner of the company looks for the following features such as: Ẋ1, Ẋ2, Ẋ3, and 
Ẋ4, which represented the collection of four attributes. Then, to find the finest preference from the 
collection of preferences, we use the proposed MADM algorithm, such as: 
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Step 1: We arrange the information matrix in the form of Table 1 by including their values in the 
form of C-PFVs. If the matrix covers the cost types of data, then we need to normalize it. Further, if 
the matrix covers the benefit type of data, then we do not need to normalize it. The information in 
Table 1 does not need to be normalized. 

 
Table 1 
Original C-PF information matrix 

 Ẋ𝟏 Ẋ𝟐 Ẋ𝟑 Ẋ𝟒 

Ẋ𝑨𝑳𝟏 ((0.8,0.7),(0.1,0.2)) ((0.81,0.71),(0.11,0.21)) ((0.82,0.72),(0.12,0.22)) ((0.83,0.73),(0.13,0.23)) 

Ẋ𝑨𝑳𝟐 ((0.2,0.5),(0.2,0.4)) ((0.21,0.51),(0.21,0.41)) ((0.22,0.52),(0.22,0.42)) ((0.23,0.53),(0.23,0.43)) 

Ẋ𝑨𝑳𝟑 ((0.7,0.8),(0.2,0.3)) ((0.71,0.81),(0.21,0.31)) ((0.72,0.82),(0.22,0.32)) ((0.73,0.83),(0.23,0.33)) 

Ẋ𝑨𝑳𝟒 ((0.4,0.5),(0.3,0.4)) ((0.41,0.51),(0.31,0.41)) ((0.42,0.52),(0.32,0.42)) ((0.43,0.53),(0.33,0.43)) 

Ẋ𝑨𝑳𝟓 ((0.5,0.8),(0.2,0.3)) ((0.51,0.81),(0.21,0.31)) ((0.52,0.82),(0.22,0.32)) ((0.53,0.83),(0.23,0.33)) 

 
Step 2: Here, we aggregate the information matrix by using the theory of the C-PFPAAA operator 

and the C-PFPAAG operator (Table 2). 
 

Table 2 
Aggregated information matrix 
 𝐂 − 𝐏𝐅𝐏𝐀𝐀𝐀 𝐂 − 𝐏𝐅𝐏𝐀𝐀𝐆 
Ẋ𝑨𝑳𝟏 ((0.8186,0.7185),(0.1170,0.2174)) ((0.8174,0.7175),(0.1196,0.2189)) 

Ẋ𝑨𝑳𝟐 ((0.2058,0.5184),(0.2174,0.4175)) ((0.2046,0.5176),(0.2189,0.4185)) 

Ẋ𝑨𝑳𝟑 ((0.7182,0.8186),(0.2174,0.3175)) ((0.7172,0.8174),(0.2189,0.3186)) 

Ẋ𝑨𝑳𝟒 ((0.4083,0.5184),(0.3175,0.4175)) ((0.4073,0.5176),(0.3186,0.4185)) 

Ẋ𝑨𝑳𝟓 ((0.5169,0.8186),(0.2174,0.3175)) ((0.5159,0.8174),(0.2189,0.3186)) 

 
Step 3: Discover the score values or accuracy values of each aggregated value (Table 3). 
 

Table 3 
Score information matrix 

 𝐂 − 𝐏𝐅𝐏𝐀𝐀𝐀 𝐂 − 𝐏𝐅𝐏𝐀𝐀𝐆 
Ẋ𝑨𝑳𝟏 0.5627 0.5604 

Ẋ𝑨𝑳𝟐 0.0447 0.433 

Ẋ𝑨𝑳𝟑 0.5189 0.5165 

Ẋ𝑨𝑳𝟒 0.0801 0.0785 

Ẋ𝑨𝑳𝟓 0.3946 0.3924 

 
Step 4: Find the ranking results and derive the finest from the collection of preferences (Table 4). 
 

Table 4 
Ranking information matrix 

Methods Rankings 

𝐂 − 𝐏𝐅𝐏𝐀𝐀𝐀 Ẋ𝐴𝐿1 ≤ Ẋ𝐴𝐿3 ≤ Ẋ𝐴𝐿5 ≤ Ẋ𝐴𝐿4 ≤ Ẋ𝐴𝐿2 

𝐂 − 𝐏𝐅𝐏𝐀𝐀𝐆 Ẋ𝐴𝐿1 ≤ Ẋ𝐴𝐿3 ≤ Ẋ𝐴𝐿5 ≤ Ẋ𝐴𝐿2 ≤ Ẋ𝐴𝐿4 
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According to the theory of the C-PFPAAA operator and the C-PFPAAG operator, we get the best 
candidate for the software company as Ẋ𝐴𝐿1.  

Moreover, we finalized the supremacy and effectiveness of the derived theory with the help of 
some comparative analysis under the consideration of the above case study example. In Table 5, 
according to the theory of C-PFPAAA and C-PFPAAG, as well as Jin et al. [27] and Akram et al. [26], 
we noticed that the best candidate for the software company is Ẋ𝐴𝐿1 .  

 
Table 5 
Representation of the comparative analysis 

Methods Score values Rankings 

Akram et al. [26] 0.5622,0.0471,0.5185,0.0829,0.3945 Ẋ𝐴𝐿1 ≤ Ẋ𝐴𝐿3 ≤ Ẋ𝐴𝐿5 ≤ Ẋ𝐴𝐿4 ≤ Ẋ𝐴𝐿2 

Average AO [27] 0.5552,0.0467,0.5129,0.083,0.3904 Ẋ𝐴𝐿1 ≤ Ẋ𝐴𝐿3 ≤ Ẋ𝐴𝐿5 ≤ Ẋ𝐴𝐿4 ≤ Ẋ𝐴𝐿2 

Geometric AO [27] 0.5536,0.0457,0.5112,0.0818,0.3889 Ẋ𝐴𝐿1 ≤ Ẋ𝐴𝐿3 ≤ Ẋ𝐴𝐿5 ≤ Ẋ𝐴𝐿2 ≤ Ẋ𝐴𝐿4 

C-PFPAAA 0.5627,0.0447,0.5189,0.0801,0.3946 Ẋ𝐴𝐿1 ≤ Ẋ𝐴𝐿3 ≤ Ẋ𝐴𝐿5 ≤ Ẋ𝐴𝐿4 ≤ Ẋ𝐴𝐿2 

C-PFPAAG 0.5604,0.433,0.5165,0.0785,0.3924 Ẋ𝐴𝐿1 ≤ Ẋ𝐴𝐿3 ≤ Ẋ𝐴𝐿5 ≤ Ẋ𝐴𝐿2 ≤ Ẋ𝐴𝐿4 

 

6. Conclusion 
 

C-PF information is an extended form of fuzzy set theory, which covers the grade of membership 
and the grade of non-membership with a valuable characteristic that is the sum of the squares of the 
duplet (for real and imaginary parts) should be contained in the unit interval. In this analysis, we 
provided the following advances: 

 
i. the theory of the C-PFPAAA operator and the C-PFPAAOA operator; 

ii. the theory of the C-PFPAAG operator and the C-PFPAAOG operator;  
iii. examined the idempotency, monotonicity, and boundedness properties of those AOs;  
iv. illustrated a MADM technique to describe the reliability and effectiveness of the AOs; 
v. demonstrated some numerical examples to state the capability of the new AOs. 

 
In the future, we will extend the theory of prioritized AA AOs for C-PF information into complex 

T-spherical fuzzy sets and try to employ it in the field of pattern recognition and clustering analysis. 
 
Appendix-1: Proof of Theorem 1 

 

Here, with the help of mathematical induction, we prove that the information in Eq. (8). For this, 
we assume 𝑛 = 2, then we have 

 

(
𝑇1

∑ 𝑇𝑗
𝑛
𝑗=1

)Ẋ1 =

(

 
 
 
 
 
 
 
 

(

  
 √

1 − 𝑒

−((
𝑇1

∑ 𝑇𝑗
𝑛
𝑗=1

)(−𝑙𝑛 (1−µẊ𝑅𝑃1

2 ))

ℸ

)

1/ℸ

,

√

1 − 𝑒

−((
𝑇1

∑ 𝑇𝑗
𝑛
𝑗=1

)(−𝑙𝑛 (1−µẊ𝐼𝑃1

2 ))

ℸ

)

1/ℸ

)

  
 
,

(

 
 
𝑒

−((
𝑇1

∑ 𝑇𝑗
𝑛
𝑗=1

)(−𝑙𝑛(𝜈Ẋ𝑅𝑃1
))

ℸ

)

1/ℸ

, 𝑒

−((
𝑇1

∑ 𝑇𝑗
𝑛
𝑗=1

)(−𝑙𝑛(𝜈Ẋ𝐼𝑃1
))

ℸ

)

1/ℸ

)

 
 

)
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(
𝑇2

∑ 𝑇𝑗
𝑛
𝑗=1

)Ẋ2 =

(

 
 
 
 
 
 
 
 

(

  
 √

1 − 𝑒

−((
𝑇2

∑ 𝑇𝑗
𝑛
𝑗=1

)(−𝑙𝑛 (1−µẊ𝑅𝑃2

2 ))

ℸ

)

1/ℸ

,

√

1 − 𝑒

−((
𝑇2

∑ 𝑇𝑗
𝑛
𝑗=1

)(−𝑙𝑛 (1−µẊ𝐼𝑃2

2 ))

ℸ

)

1/ℸ

)

  
 
,

(

 
 
𝑒

−((
𝑇2

∑ 𝑇𝑗
𝑛
𝑗=1

)(−𝑙𝑛(𝜈Ẋ𝑅𝑃2
))

ℸ

)

1/ℸ

, 𝑒

−((
𝑇2

∑ 𝑇𝑗
𝑛
𝑗=1

)(−𝑙𝑛(𝜈Ẋ𝐼𝑃2
))

ℸ

)

1/ℸ

)

 
 

)

 
 
 
 
 
 
 
 

  

 
Thus 
 

𝐶 − 𝑃𝐹𝑃𝐴𝐴𝐴(Ẋ1, Ẋ2) =
𝑇1

∑ 𝑇𝑗
𝑛
𝑗=1

(Ẋ1) ⊕
𝑇2

∑ 𝑇𝑗
𝑛
𝑗=1

(Ẋ2) =

(

 
 
 
 
 
 
 
 

(

  
 √

1− 𝑒

−((
𝑇1

∑ 𝑇𝑗
𝑛
𝑗=1

)(−𝑙𝑛 (1−µẊ𝑅𝑃1

2 ))

ℸ

)

1/ℸ

,

√

1 − 𝑒

−((
𝑇1

∑ 𝑇𝑗
𝑛
𝑗=1

)(−𝑙𝑛 (1−µẊ𝐼𝑃1

2 ))

ℸ

)

1/ℸ

)

  
 
,

(

 
 
𝑒

−((
𝑇1

∑ 𝑇𝑗
𝑛
𝑗=1

)(−𝑙𝑛(𝜈Ẋ𝑅𝑃1
))

ℸ

)

1/ℸ

, 𝑒

−((
𝑇1

∑ 𝑇𝑗
𝑛
𝑗=1

)(−𝑙𝑛(𝜈Ẋ𝐼𝑃1
))

ℸ

)

1/ℸ

)

 
 

)

 
 
 
 
 
 
 
 

⊕

(

 
 
 
 
 
 
 
 

(

  
 √

1− 𝑒

−((
𝑇2

∑ 𝑇𝑗
𝑛
𝑗=1

)(−𝑙𝑛 (1−µẊ𝑅𝑃2

2 ))

ℸ

)

1/ℸ

,

√

1 − 𝑒

−((
𝑇2

∑ 𝑇𝑗
𝑛
𝑗=1

)(−𝑙𝑛 (1−µẊ𝐼𝑃2

2 ))

ℸ

)

1/ℸ

)

  
 
,

(

 
 
𝑒

−((
𝑇2

∑ 𝑇𝑗
𝑛
𝑗=1

)(−𝑙𝑛(𝜈Ẋ𝑅𝑃2
))

ℸ

)

1/ℸ

, 𝑒

−((
𝑇2

∑ 𝑇𝑗
𝑛
𝑗=1

)(−𝑙𝑛(𝜈Ẋ𝐼𝑃2
))

ℸ

)

1/ℸ

)

 
 

)

 
 
 
 
 
 
 
 

  

=

(

 
 
 
 
 
 
 
 
 

(

 
 
 
 √

1− 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
2
𝑗=1

)2
𝑗=1 (−𝑙𝑛 (1−µẊ𝑅𝑃𝑗

2 ))

ℸ

)

1
ℸ

,

√

1 − 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
2
𝑗=1

)2
𝑗=1 (−𝑙𝑛 (1−µẊ𝐼𝑃𝑗

2 ))

ℸ

)

1
ℸ

)

 
 
 
 

,

(

 
 
𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
2
𝑗=1

)2
𝑗=1 (−𝑙𝑛(𝜈Ẋ𝑅𝑃𝑗

))

ℸ

)

1/ℸ

, 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
2
𝑗=1

)2
𝑗=1 (−𝑙𝑛(𝜈Ẋ𝐼𝑃𝑗

))

ℸ

)

1/ℸ

)

 
 

)

 
 
 
 
 
 
 
 
 

  

 

For 𝑛 = 2, we got the best result. Further, for 𝑛 = 𝑘, we also considered that our result is correct. 
Then 
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𝐶 − 𝑃𝐹𝑃𝐴𝐴𝐴(Ẋ1, Ẋ2, … , Ẋ𝑘) =

(

 
 
 
 
 
 
 
 
 

(

 
 
 
 √

1 − 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑘
𝑗=1

)𝑘
𝑗=1 (−𝑙𝑛 (1−µẊ𝑅𝑃𝑗

2 ))

ℸ

)

1
ℸ

,

√

1 − 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑘
𝑗=1

)𝑘
𝑗=1 (−𝑙𝑛 (1−µẊ𝐼𝑃𝑗

2 ))

ℸ

)

1
ℸ

)

 
 
 
 

,

(

 
 
𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑘
𝑗=1

)𝑘
𝑗=1 (−𝑙𝑛(𝜈Ẋ𝑅𝑃𝑗

))

ℸ

)

1/ℸ

, 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑘
𝑗=1

)𝑘
𝑗=1 (−𝑙𝑛(𝜈Ẋ𝐼𝑃𝑗

))

ℸ

)

1/ℸ

)

 
 

)

 
 
 
 
 
 
 
 
 

  

 

Then, for 𝑛 = 𝑘 + 1, we derive our required theme, such as 
 

𝐶 − 𝑃𝐹𝑃𝐴𝐴𝐴(Ẋ1, Ẋ2, … , Ẋ𝑘+1) =
𝑇1

∑ 𝑇𝑗
𝑛
𝑗=1

(Ẋ1) ⊕
𝑇2

∑ 𝑇𝑗
𝑛
𝑗=1

(Ẋ2)⊕ …⊕
𝑇𝑘

∑ 𝑇𝑗
𝑘
𝑗=1

(Ẋ𝑘) ⊕
𝑇𝑘+1

∑ 𝑇𝑗
𝑘+1
𝑗=1

(Ẋ𝑘+1)  

=⊕𝑗=1
𝑘 (

𝑇𝑗

∑ 𝑇𝑗
𝑛
𝑗=1

(Ẋ𝑗))⊕
𝑇𝑘+1

∑ 𝑇𝑗
𝑘+1
𝑗=1

(Ẋ𝑘+1)  

=

(

 
 
 
 
 
 
 
 
 

(

 
 
 
 √

1− 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑘
𝑗=1

)𝑘
𝑗=1 (−𝑙𝑛 (1−µẊ𝑅𝑃𝑗

2 ))

ℸ

)

1
ℸ

,

√

1 − 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑘
𝑗=1

)𝑘
𝑗=1 (−𝑙𝑛 (1−µẊ𝐼𝑃𝑗

2 ))

ℸ

)

1
ℸ

)

 
 
 
 

,

(

 
 
𝑒
−(∑ (

𝑇𝑗

∑ 𝑇𝑗
𝑘
𝑗=1

)𝑘
𝑗=1 (−𝑙𝑛(𝜈Ẋ𝑅𝑃𝑗

))

ℸ

)

1/ℸ

, 𝑒
−(∑ (

𝑇𝑗

∑ 𝑇𝑗
𝑘
𝑗=1

)𝑘
𝑗=1 (−𝑙𝑛(𝜈Ẋ𝐼𝑃𝑗

))

ℸ

)

1/ℸ

)

 
 

)

 
 
 
 
 
 
 
 
 

⊕
𝑇𝑘+1

∑ 𝑇𝑗
𝑘+1
𝑗=1

(Ẋ𝑘+1)  

(

 
 
 
 
 
 
 
 
 

(

 
 
 
 √

1− 𝑒

−((
𝑇𝑘+1

∑ 𝑇𝑗
𝑘+1
𝑗=1

)(−𝑙𝑛 (1−µẊ𝑅𝑃𝑘+1

2 ))

ℸ

)

1/ℸ

,

√

1 − 𝑒

−((
𝑇𝑘+1

∑ 𝑇𝑗
𝑘+1
𝑗=1

)(−𝑙𝑛 (1−µẊ𝐼𝑃𝑘+1

2 ))

ℸ

)

1/ℸ

)

 
 
 
 

,

(

 
 
𝑒
−((

𝑇𝑘+1

∑ 𝑇𝑗
𝑘+1
𝑗=1

)(−𝑙𝑛(𝜈Ẋ𝑅𝑃𝑘+1
))

ℸ

)

1/ℸ

, 𝑒
−((

𝑇𝑘+1

∑ 𝑇𝑗
𝑘+1
𝑗=1

)(−𝑙𝑛(𝜈Ẋ𝐼𝑃𝑘+1
))

ℸ

)

1/ℸ

)

 
 

)

 
 
 
 
 
 
 
 
 

  

=

(

 
 
 
 
 
 
 
 
 

(

 
 
 
 √

1− 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑘
𝑗=1

)𝑘
𝑗=1 (−𝑙𝑛 (1−µẊ𝑅𝑃𝑗

2 ))

ℸ

)

1
ℸ

,

√

1 − 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑘
𝑗=1

)𝑘
𝑗=1 (−𝑙𝑛 (1−µẊ𝐼𝑃𝑗

2 ))

ℸ

)

1
ℸ

)

 
 
 
 

,

(

 
 
𝑒
−(∑ (

𝑇𝑗

∑ 𝑇𝑗
𝑘
𝑗=1

)𝑘
𝑗=1 (−𝑙𝑛(𝜈Ẋ𝑅𝑃𝑗

))

ℸ

)

1/ℸ

, 𝑒
−(∑ (

𝑇𝑗

∑ 𝑇𝑗
𝑘
𝑗=1

)𝑘
𝑗=1 (−𝑙𝑛(𝜈Ẋ𝐼𝑃𝑗

))

ℸ

)

1/ℸ

)

 
 

)

 
 
 
 
 
 
 
 
 

⊕  
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=

(

 
 
 
 
 
 
 
 
 

(

 
 
 
 √

1− 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑘+1
𝑗=1

)𝑘+1
𝑗=1 (−𝑙𝑛 (1−µẊ𝑅𝑃𝑗

2 ))

ℸ

)

1
ℸ

,

√

1 − 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑘+1
𝑗=1

)𝑘+1
𝑗=1 (−𝑙𝑛 (1−µẊ𝐼𝑃𝑗

2 ))

ℸ

)

1
ℸ

)

 
 
 
 

,

(

 
 
𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑘+1
𝑗=1

)𝑘+1
𝑗=1 (−𝑙𝑛(𝜈Ẋ𝑅𝑃𝑗

))

ℸ

)

1/ℸ

, 𝑒

−(∑ (
𝑇𝑗

∑ 𝑇𝑗
𝑘+1
𝑗=1

)𝑘+1
𝑗=1 (−𝑙𝑛(𝜈Ẋ𝐼𝑃𝑗

))

ℸ

)

1/ℸ

)

 
 

)

 
 
 
 
 
 
 
 
 

  

 

Hence, our required result is proven. 
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